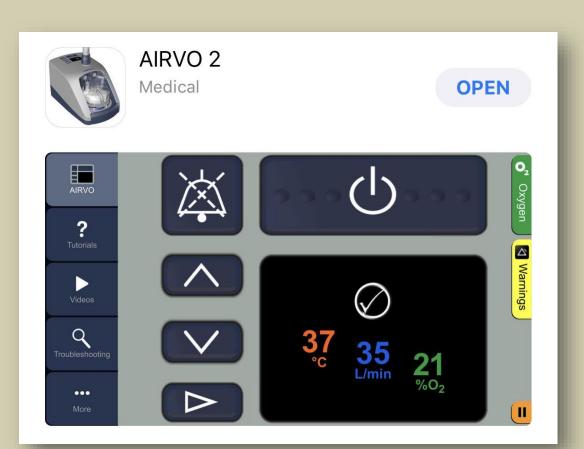
HIGH FLOW OXYGEN THERAPY

KARUNA WONGTANGMAN, MD.


CHUTIMA LEEWATCHARAROONGJAROEN, MD.

PARADEE TEERAVIDCHA, MD.

OUTLINE

- > Oxygen delivery system
- Physiologic effect of HFNC
- Current evidence for HFNC
- > HFNC failure

OUTLINE

- > Oxygen delivery system
- > Physiologic effect of HFNC
- >Current evidence for HFNC
- > HFNC failure

Oxygen delivery system

Low flow oxygen delivery system

- Flow < inspiratory flow demand
- Variable FIO2
- Nasal cannula, simple mask, partial rebreathing mask

Oxygen delivery system

High flow oxygen delivery system

- Flow > inspiratory flow demand
- Constant F_IO₂
- Venturi mask,
 high flow nasal cannula,
 T-piece with reservoir,
 Non-invasive mechanical
 ventilator

High flow nasal therapy

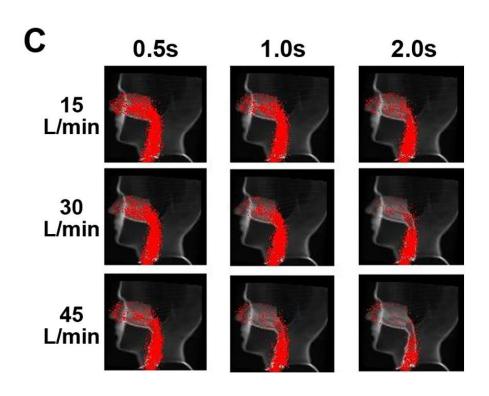
OUTLINE

- > Oxygen delivery system
- Physiologic effect of HFNC
- >Current evidence for HFNC
- > HFNC failure

OUTLINE

- Physiologic effect of HFNC
 - > Wash out CO2 in anatomical dead space

Creates positive nasopharyngeal pressure


Overcomes resistance against expiratory flow in nasopharynx

Increase respiratory lung volume

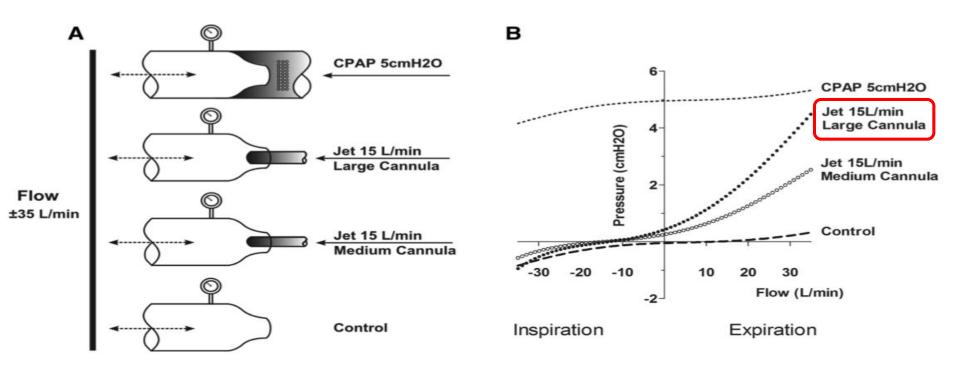
Humidification & Good mucociliary function

Constant F₁O₂

Wash out CO2 in anatomical dead space

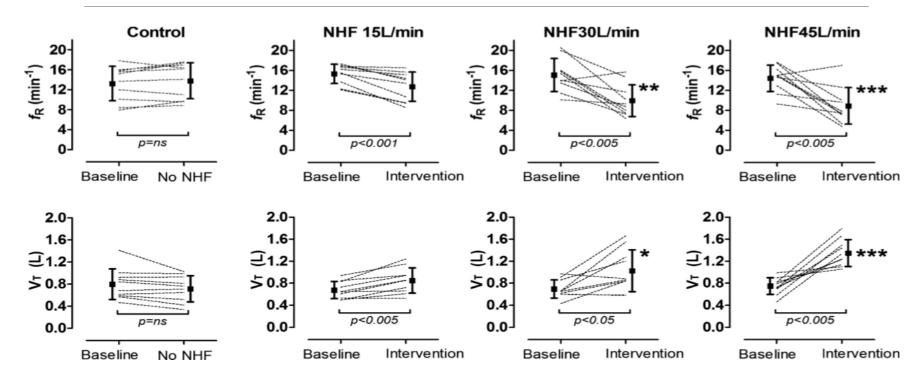
- Upper airway model, constructed from segmented CT-scan images of a healthy volunteer
- Filling the models with tracer gases, ^{81m}Kr-gas radioactive
- NHF was delivered at rates of 15, 30, and 45 l/min
- Showed flow-dependent tracergas clearance in the models

Creates positive nasopharyngeal pressure


Table 2 Ex	piratory pharyngeal pr	essure			
	Nasal flow (L/min)				—
	0	10	20	40	60
Mouth open	(cmH ₂ O)				
Group	0.3 (0.3-0.5)	0.7 (0.6-0.9)	1.4 (1.3—1.8) ^a	$2.2 (2.0-2.5)^{a,b}$	$2.7 (2.4-3.1)^a$
Male	0.4 (0.2-0.6)	0.7 (0.6-0.9)	1.4 (1.0—1.8) ^a	$2.0 (1.9-2.3)^a$	$2.6 (2.3-2.7)^a$
Female	0.3 (0.3-0.4)	0.7 (0.6-1.0)	1.4 (1.3—1.8) ^a	2.3 (2.1–2.7) ^a	3.1 (2.6-3.9) ^a
Mouth closed	I (cmH ₂ O)				
Group	0.8 (0.5-1.3)	1.7 (1.2-2.3)	$2.9 (2.2-3.7)^{a,b}$	5.5 (4.1–7.2) ^{a,b}	$7.4 (5.4-8.8)^a$
Male	0.7 (0.2-1.0)	1.2 (1.0-1.6)	$2.2 (2.0-2.9)^a$	$4.1 (3.2-5.2)^a$	5.4 (5.0-6.0) ^a
Female	1.2 (0.5–1.7)	2.3 (1.9–2.6)	3.7 (2.9-4.0) ^a	7.2 (5.9–7.7) ^a	8.7 (7.7–9.7) ^a

^a Significant adjusted *p*-value for comparison with zero flow.

→ HFNC : ↑ nasal flow → ↑ expiratory pharyngeal pressure


^b Significant adjusted *p*-value for comparison with previous flow rate.

Overcomes resistance against expiratory flow in nasopharynx

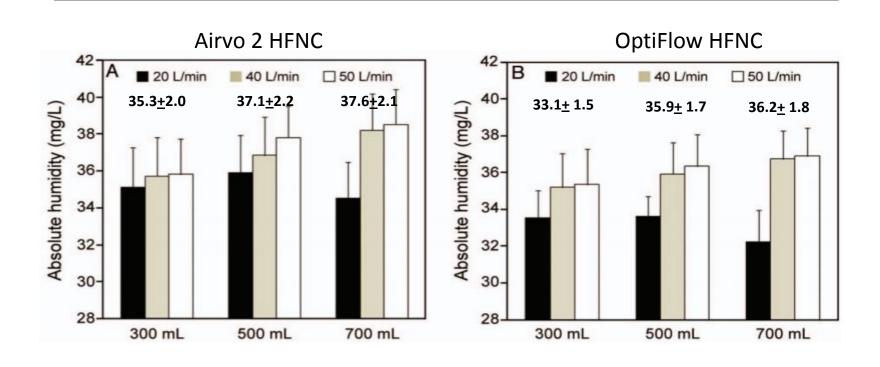
- ➤ HFNC : ↑ expiratory resistance → ↑ expiratory flow
 - ↓ inspiratory resistant

Increase respiratory lung volume

 \rightarrow HFNC: \uparrow tidal volume (from 0.7 \pm 0.1 L \rightarrow 0.8 \pm 0.2 L)

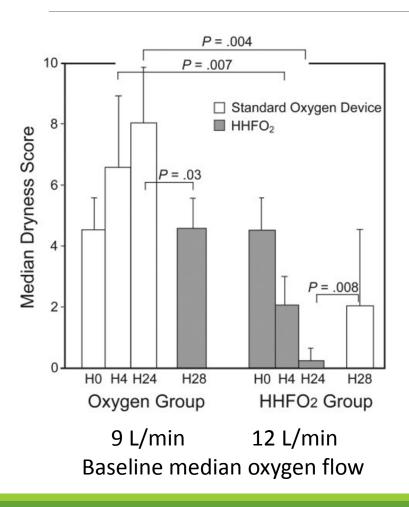
 \checkmark respiratory rate (from 16 \pm 2 \rightarrow 13 \pm 3 bpm)

Increase respiratory lung volume


Table 2 Outcome variables. Low-flow oxygen compared with HFNCs

Variable	Low-flow oxygen [mean (sp)]	HFNC [mean (sp)]	Mean difference [mean (sp)]	95% confidence interval	P-value
End-expiratory lung impedance (units)	419 (212.5)	1936 (212.9)	1517 (46.6)	1425, 1608	< 0.001
Mean airway pressure (cm H ₂ O)	−0.3 (0.9)	2.7 (1.2)	3.0 (1.3)	2.4, 3.7	< 0.001
Respiratory rate (bpm)	20.9 (4.4)	17.5 (4.6)	−3.4 (2.8)	-2.0, -4.7	< 0.001
Borg score					
0-10	2.7 (2.6)	1.9 (2.3)	−0.8 (1.2)	-0.1, -1.4	0.023
Tidal variation (units)	1512 (195.0)	1671 (195.1)	159 (21.6)	117, 201	< 0.001
$Pa_{o_2}/F_{I_{o_2}}$ ratio (mm Hg)	160 (53.7)	190.6 (57.9)	30.6 (25.9)	17.9, 43.3	< 0.001

➤HFNC→ ↑ end-expiratory lung impedance


- ↑ mean airway pressure, ↑ tidal impedance variation improved PF ratio, dyspnea score
- \rightarrow \downarrow respiratory rate

Humidification & Good mucociliary function

- > Absolute humidity was lower at 20 than 40 and 50 L/min of flow
- ➤ HFNC → AH increased with increasing HFNC flow

Humidification & Good mucociliary function

- > HFNC
 - \rightarrow \downarrow dryness of nasal mucosa
 - $\rightarrow \psi$ discomfort
 - → improves clinical tolerance of oxygen therapy

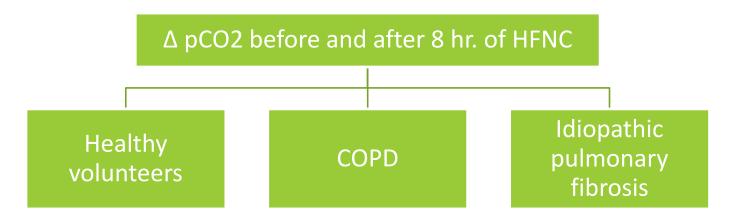
Constant F₁O₂

Delivered flow rate	Nose breathing at rest		Mouth breathing at rest		Nose breathing with exercise				
	$F_{_{\!E}}\!O_{_2}$	F_ECO_2	FiO_{2}	$F_{_{\rm E}}O_{_2}$	F_ECO_2	FiO_{2}	$F_{_{\rm E}}\!O_{_2}$	$\mathrm{F_{E}CO_{2}}$	FiO_{2}
50 l/min	0.511	0.052	0.568	0.484	0.046	0.535	0.328	0.071	0.408
40 l/min	0.488	0.059	0.550	0.448	0.048	0.502	0.289	0.070	0.370
30 l/min	0.458	0.055	0.519	0.431	0.049	0.486	0.242	0.068	0.321
20 l/min	0.404	0.054	0.465	0.361	0.048	0.416	0.235	0.066	0.313
10 l/min	0.309	0.053	0.369	0.284	0.051	0.342	0.188	0.064	0.263

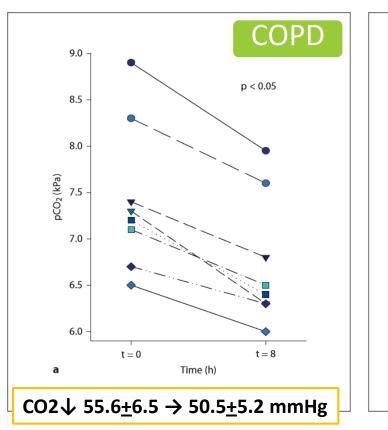
 F_EO_2 =fraction of end-tidal O_2 , F_ECO_2 =fraction of end-tidal CO_2 , FiO_2 =fraction of inspiratory O_2 .

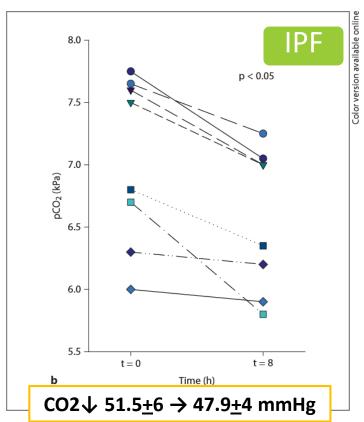
> FiO2 approached 0.60 as gas flow rates increased above 30 l/minute during nose breathing at rest

OUTLINE


- > Oxygen delivery system
- > Physiologic effect of HFNC
- >Current evidence for HFNC
- > HFNC failure

Hypercapnic respiratory failure :HFNC effect in COPD &IPF


Effects of Nasal High Flow on Ventilation in Volunteers, COPD and Idiopathic Pulmonary Fibrosis Patients

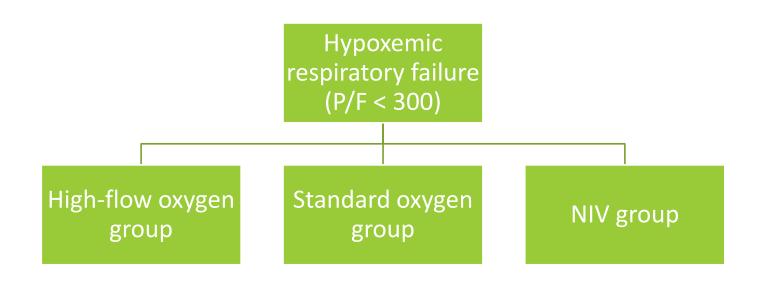

Jens Bräunlich Denise Beyer David Mai Stefan Hammerschmidt Hans-Jürgen Seyfarth Hubert Wirtz

Department of Respiratory Medicine, University of Leipzig, Leipzig, Germany

Hypercapnic respiratory failure :HFNC effect in COPD &IPF

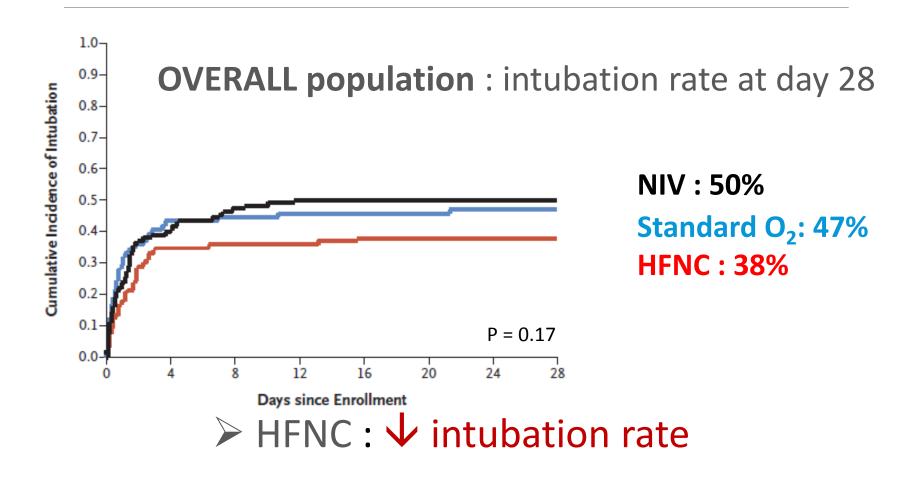
➤ HFNC : ↑ CO2 wash out

The NEW ENGLAND JOURNAL of MEDICINE

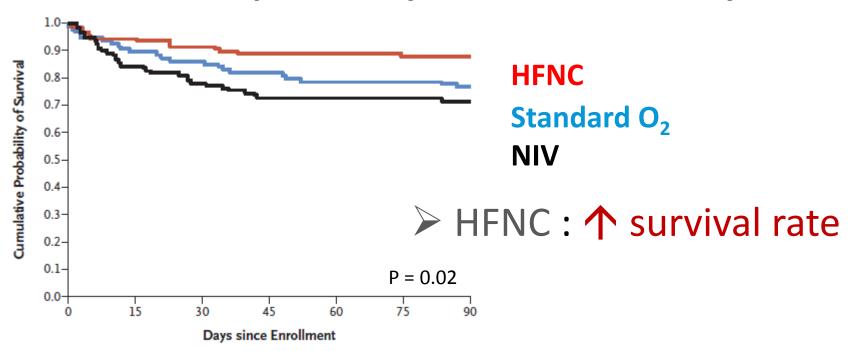

ESTABLISHED IN 1812

JUNE 4, 2015

VOL. 372 NO. 23


High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

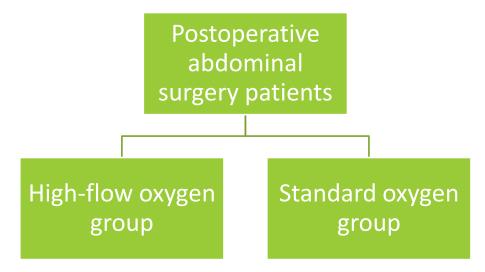
Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D., Christophe Girault, M.D., Ph.D., Stéphanie Ragot, Pharm.D., Ph.D., Sébastien Perbet, M.D., Gwénael Prat, M.D., Thierry Boulain, M.D., Elise Morawiec, M.D., Alice Cottereau, M.D., Jérôme Devaquet, M.D., Saad Nseir, M.D., Ph.D., Keyvan Razazi, M.D., Jean-Paul Mira, M.D., Ph.D., Laurent Argaud, M.D., Ph.D., Jean-Charles Chakarian, M.D., Jean-Damien Ricard, M.D., Ph.D., Xavier Wittebole, M.D., Stéphanie Chevalier, M.D., Alexandre Herbland, M.D., Muriel Fartoukh, M.D., Ph.D., Jean-Michel Constantin, M.D., Ph.D., Jean-Marie Tonnelier, M.D., Marc Pierrot, M.D., Armelle Mathonnet, M.D., Gaëtan Béduneau, M.D., Céline Delétage-Métreau, Ph.D., Jean-Christophe M. Richard, M.D., Ph.D., Laurent Brochard, M.D., and René Robert, M.D., Ph.D., for the FLORALI Study Group and the REVA Network*



Primary outcome: intubation rate at day 28

Secondary outcomes: mortality in the ICU at 90 days

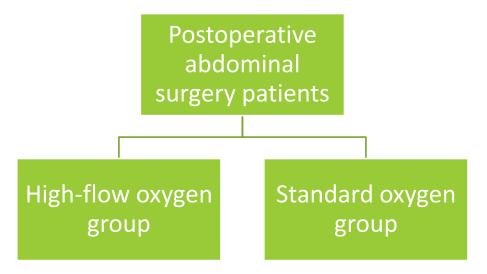
Cumulative probability of survival at 90 days



Intensive Care Med (2016) 42:1888–1898 DOI 10.1007/s00134-016-4594-y

ORIGINAL

Effect of early postextubation high-flow nasal cannula vs conventional oxygen therapy on hypoxaemia in patients after major abdominal surgery: a French multicentre randomised controlled trial (OPERA)


Emmanuel Futier^{1,2}, Catherine Paugam-Burtz³, Thomas Godet¹, Linda Khoy-Ear³, Sacha Rozencwajg³, Jean-Marc Delay⁴, Daniel Verzilli⁴, Jeremie Dupuis¹, Gerald Chanques^{4,6}, Jean-Etienne Bazin¹, Jean-Michel Constantin^{1,2}, Bruno Pereira⁵, Samir Jaber^{4,6*} and OPERA study investigators

Primary outcome:

hypoxemia (P/F ratio < 300)

- 1 hr after extubation
- after O₂ treatment discontinuation

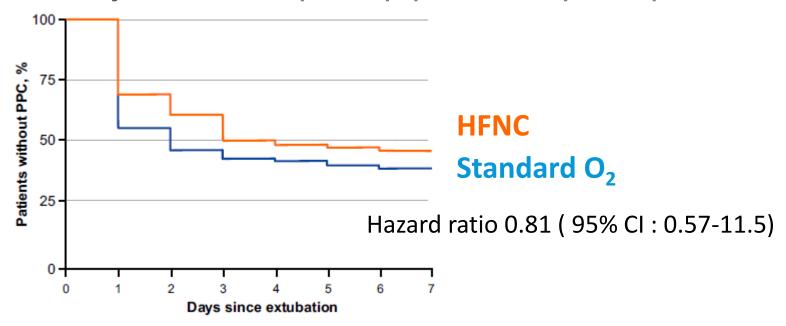
Secondary outcome:

- postoperative pulmonary complications
- duration of hospital stay
- mortality rate

Primary outcome: hypoxemia (P/F ratio < 300)

Outcomes	No./total no. (%		ARR or between-group <i>p</i> value		
	Usual care	HFNC oxygen therapy	difference (95 % CI)		
Primary outcomes					
Postoperative hypoxaemia ^{a,b}					
1 h after extubation	27/112 (24)	23/108 (21)	-3 (-14 to 8)	0.62	
After discontinuation of the study treatment	34/112 (30)	29/108 (27)	-4 (-15 to 8)	0.57	

 \triangleright HFNC : does not \lor postop hypoxemia


Secondary outcome:

Outcomes	No./total no. (9	%)	ARR or between-group p value		
	Usual care	HFNC oxygen therapy	—difference (95 % Cl) en		
Secondary outcomes					
Need for supplemental oxygen therapy after treat- ment discontinuation	92/112 (82)	79/108 (73)	-9 (-20 to 2)	0.11	
Pulmonary complications ^c within 7 days	19/112 (17)	21/108 (20)	2 (-8 to 13)	0.63	
ICU length of stay (days)	5 (3–13)	6 (4–16)	3 (-5 to 12)	0.53	
Hospital length of stay (days)	11 (7–18)	12 (7–20)	0.5 (-3.5 to 4.5)	0.58	
In-hospital mortality	3/112 (3)	2/108 (2)	-1 (-5 to 3)	0.68	

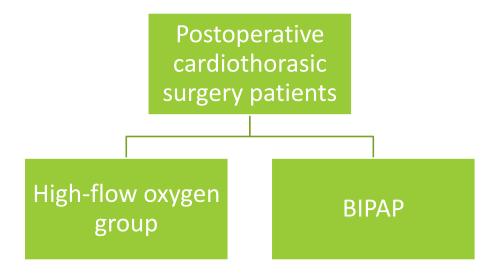
 \triangleright HFNC : does not \checkmark

postop pulmonary complication, length of hospital stays, mortality

Secondary outcome: postop pulmonary complication

➤ HFNC : does not improve pulmonary outcomes in postoperative patients compared w/ standard O₂ therapy

Post-extubation : BiPOP study

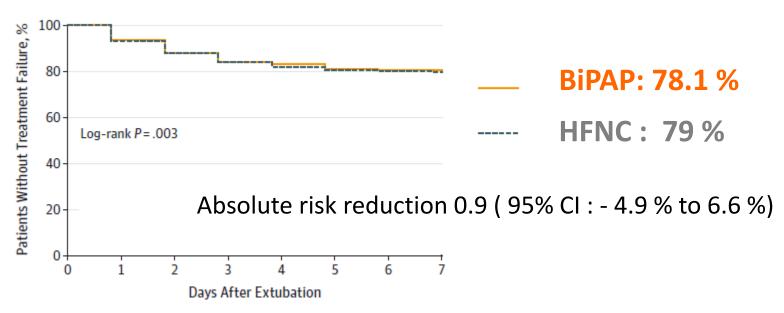

Research

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

High-Flow Nasal Oxygen vs Noninvasive Positive Airway
Pressure in Hypoxemic Patients After Cardiothoracic Surgery
A Randomized Clinical Trial

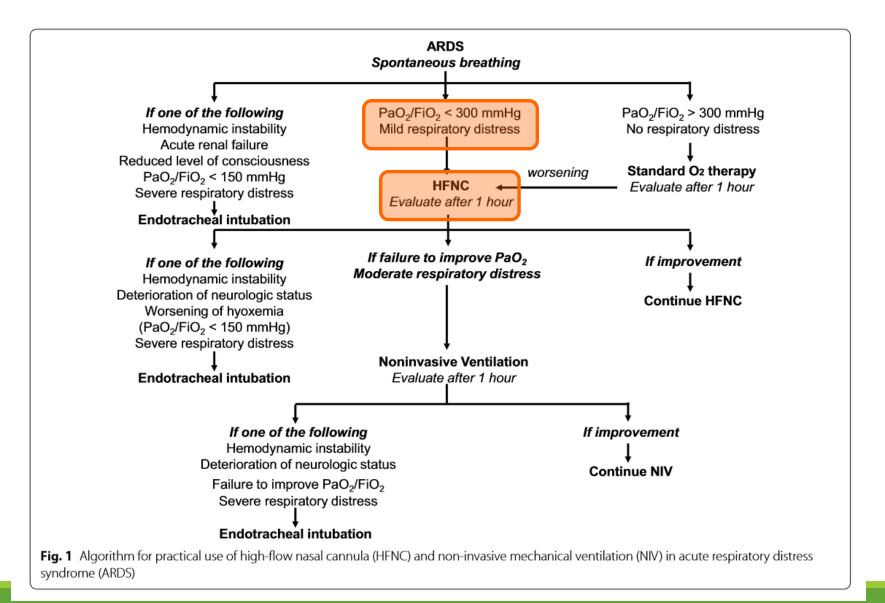
François Stéphan, MD, PhD; Benoit Barrucand, MD; Pascal Petit, MD; Saida Rézaiguia-Delclaux, MD; Anne Médard, MD; Bertrand Delannoy, MD; Bernard Cosserant, MD; Guillaume Flicoteaux, MD; Audrey Imbert, MD; Catherine Pilorge, MD; Laurence Bérard, MD; for the BiPOP Study Group

Post-extubation : BiPOP study



Primary outcome: treatment failure

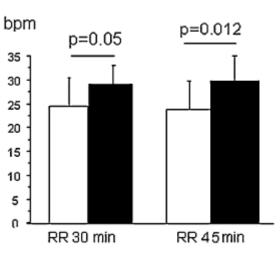
- Reintubation
- Premature Rx discontinuation: patient request, adverse effects ie. gastric distention


Post-extubation : BiPOP study

Patients w/o treatment failure (%)

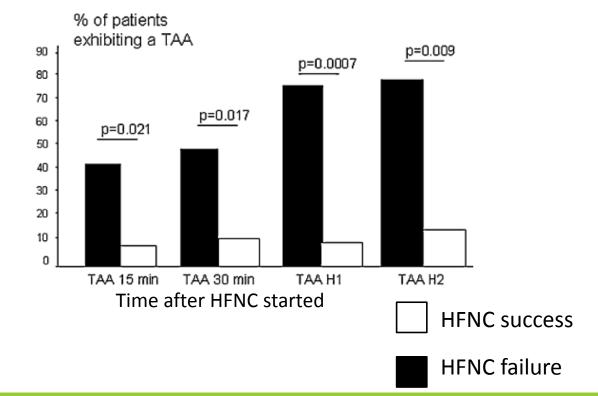
> HFNC: is not inferior to BiPAP in postoperative patients.

HFNC and ARDS

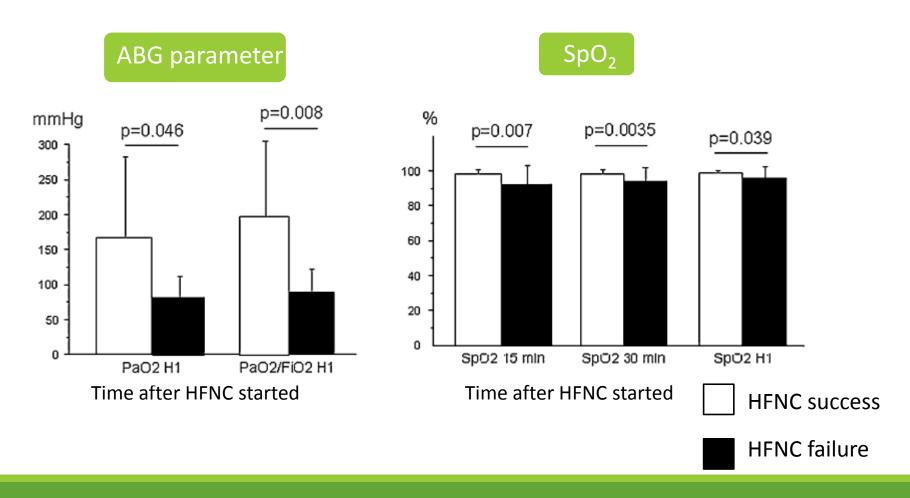


OUTLINE

- > Oxygen delivery system
- > Physiologic effect of HFNC
- >Current evidence for HFNC
- > HFNC failure


Signs of HFNC failure

Respiratory Rate



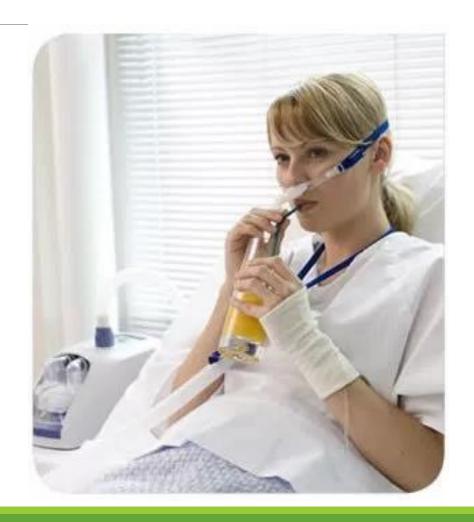
Time after HFNC started

Thoracoabdominal asynchrony

Signs of HFNC failure

HFNC failure

Table 3 outcomes for the early HFNC failure group compared with the late HFNC failure group


Variables		
	Odds ratio (95 % CI)	P value ^c
Primary outcome		
Overall ICU mortality	0.323 (0.158-0.658)	0.002
Secondary outcomes		
Extubation success	3.284 (1.361-7.923)	0.008
Ventilator-weaning	3.056 (1.470-6.351)	0.003
Ventilator-free days to day 28	0.542 (0.383–0.768) ^d	0.001 ^e
14-Day mortality from HFNC application	0.949 (0.455–1.977)	0.888
14-Day mortality from intubation	0.653 (0.325–1.311)	0.231
28-Day mortality from HFNC application	0.820 (0.416–1.616)	0.566
28-Day mortality from intubation	0.571 (0.287–1.138)	0.111
Length of ICU stay	0.827 (0.586-1.169) ^f	0.282^{g}

The early intubated patients (<48 hr.)

- ◆ Overall ICU mortality
- ↑ Extubation success
- ↑ Ventilator weaning

Conclusion

- > HFNC is an effective in treating
 - hypercapnic respiratory failure
 - hypoxemic respiratory failure
 - mild ARDS
- Role of HFNC in post operative patients is unclear
- Failure of HFNC might cause delayed intubation and worse clinical outcomes

